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Corrections to scaling for the two-dimensional dynamicXY model
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With large-scale Monte Carlo simulations, we confirm that for the two-dimensiifamodel, there is a
logarithmic correction to scaling in the dynamic relaxation starting from a completely disordered state, while
only an inverse power law correction in the case of starting from an ordered state. The dynamic exj®nent
z=2.041).
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In recent years, much attention has been drawn to noras well as the critical temperatuf4,8,28,31; for a review,
equilibrium short-time behavior of critical dynamics. Tradi- see Ref[9]. Since now the measurements are carried out in
tionally, it is believed that universal dynamic scaling behav-the short-time regime, the dynamic approach does not suffer
ior only exists in the long-time regime of the dynamic from critical slowing down. Compared with those methods
evolution. In 1989, however, with renormalization group developed in equilibrium, e.g., the nonlocal cluster algo-
methods Janssen, Schaub, and Schmittmann derived a dythms, the dynamic approach does study the original local
namic scaling form for theéD(N) vector model, which is dynamics and can be applied to disorder systems. Further-
valid up to themacroscopicshort-time regimg1]. The dy- more, to solve numerically dynamic equations with a con-
namic process they considered is that the system initially at Einuous time to the long-time regime is very difficult, but the
very high temperature state with small or zero magnetizatiorghort-time dynamic approach works welll0]. Such a
is suddenly quenched to the critical temperature, then renethod should be also very interesting in experiments.
leased to dynamic evolution of modal Important is that a To understand the universal short-time behavior, one
new independent critical exponent must be introduced to deshould distinguish the macroscopic and microscopic time
scribe the scaling behavior of the initial magnetization. Af-scales. The dynamic scaling emerges only after a time scale
terwards, some evidence for the short-time dynamic scalingmic Which is sufficiently large in microscopic sense but still
was also observed in Monte Carlo simulatig@8s3]. On the  very small in macroscopic sense. In Monte Carlo simula-
other hand, it was found that the power law decay of thetions, for example, if a sweep over all spins on a lattice is
magnetization starting from a completely ordered stateconsidered to be a microscopic time um;. is usually from
shows up from rather early times, e.g., $é¢5)], and it can  a few to 100 Monte Carlo time step8]. Therefore, perform-
be used to estimate the dynamic exponentnspired by ing simulations up to some hundred or thousand time steps is
these works, in the last several years nonequilibrium shortisually sufficient to obtain rather good values for critical
time critical dynamics has been systematically investigategtxponents. However, in the recent study of the two-
with Monte Carlo method$6—10. Simulations have ex- dimensionalXY model (with a Kosterlitz-Thouless phase
tended from regular classical spin modgs11-14, to sta- transition) and the random-bond Ising modEl2,32-34,
tistical systems with quenched disordd5—17, quantum one observes somewhat unexpected phenomena. The dy-
spin systems and lattice gauge theorji@8—20, dynamic namic exponent estimated from a dynamic processes start-
systems without detailed baland@1-23, the hard-disk ing from a disordered state is bigg@iO to 15 % for theX'Y
model[24,25, and fluid systemf26]. References given here model and 5 to 10 % for the random-bond Ising modiean
are only a part of recent ones and not complete. A relativelyhat from an ordered state. Puzzling is that the resulting static
complete list of the relevant references before 1998 can bexponents are correct within statistical errors. This behavior
found in Ref.[9]. All numerical and analytical results con- should have its origin in the existence of the free vortices or
firm the existence of a rather general dynamic scaling fornthe metastable states. Similar concern forxhémodel with
in critical dynamic systems at early times. different boundary conditions and dynamics can be found

The short-time dynamic scaling has not been systematialso in Ref.[13]. If such a kind of phenomena are not clari-
cally explored in experiments. But the dynamic scaling beied, further applications of the short-time dynamic scaling
havior around a spin-glass transiti¢®,27—29,16 is very  becomes complicated and difficult.
similar to that around a standard critical point. For example, In a recent papell2] (see also Ref[33]), Bray, Briant,
the experimental measurements of the remanent magnetizand Jervis argue theoretically that there is a logarithmic cor-
tion in spin glasses support not only the power law scalingection for the two-dimensionaXY model in the dynamic
behavior but also the scaling relations between the exponenfsocess starting from a disordered state. However, the pre-
[30,14]. sented numerical data cannot distinguish the two ansatzes, a

The short-time dynamic scaling form not only is concep-possible bigger, or a logarithmic correction. On the other
tually interesting, but also provides new techniques for théhand, there has been some controversy over the value of the
measurements of both dynamic and static critical exponentdynamic exponentz (see, e.g., Ref[13] and references
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T T Here 7 is the usual static exponert,is the dynamic expo-
nent, andb, andc, are constants. Similarly, the autocorre-
lation

A(t)=b,[t/(1+c, In(t))]?" 92 2

Hered=2 is the spatial dimension. K, andc, are zeros,
the standard power law scaling behavior is recovered. Look-
ing at Fig. 1,A(t) bends obviously downwards, consistent
with the logarithmic correction. However, the behavior of
M®@)(t) is somewhat complicated and the correction is also
less strong than that f&k(t). It bends slightly downwards at
early times, and changes to upwards only after about 100
time steps. The first behavior is not universal behavior but
microscopic-detail dependent. Anyway, if the simulation is
. 10000 performed only up td=2000 or 300(0012,32, it would be
difficult to conclude whether and how the power law is cor-
FIG. 1. Time evolution of the second moment and autocorrelafected. Now, we fit the two solid lines in Fig. 1 to tiAe-
tion starting from a disordered state in log-log scale. Dashed linesazein Egs.(1) and(2) in a time interva[ 100,10 240. The
are the fitted curves with a logarithmic correction. fitted curves are shown with dashed lines in the figure. The
quality of the fitting is good, and the resulting exponents are
(2—17)/z=0.866(3) andd/z— 0#=0.73Q1).
Here it is very important to address that if directly mea-
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therein, and here it is especially interesting whetters
exactly 2[12]. In this Rapid Communication, we report our

large-scale Monte Carlo simulations for the two-dimensionaP "9 the slope,. e.g. foM™(t) in Fig. 1, in any time
. . X oo Intervals we obtain (2- %)/z around 0.77 to 0.78. These
XY model, examine possible corrections to scaling in dy-

i 0 2)
namic processes starting from both ordered and disorderevcflIueS differ from 0.866(3) by more than 10 %. BB*()

. o andA(t) fit uniquelyto the Ansazein Eqgs.(1) and(2)? We
states, and determine relevant critical exponents accuratel (1) quely as. (1) 2)

. . . -CUrately, ave tried inverse power law corrections, e.g., ¥o¥)(t),
In the simulations, the system in a macroscopic initial

state is suddenly quenched to the transition temperdigte
or slightly below, then released to dynamic evolution of
modelA. In the literatureT«t is reported to be between 0.89
and 0.90. In this paper, we take the temperaflire0.89.
Following Ref.[12], we adopt the 'heat-bath’ algorithm in

which a trial move is accepted with probability [1/ M@)(t) and A(t) respectively, while the exponewtiz— 6
+exp(AE/T)], whereAE is the energy change associated .o mains the same and {27)/z differs only by 1 or 2%. This
with the move. All results are presented with a lattice sizesrongly indicates that a logarithmic correction is indeed cor-
L=256. Simulations with other lattice sizes confirm that therect, |t is believed that the logarithmic corrections are related
finite size effect forL =256 has been completely invisible to the vortex pair annihilation, and do not disappear within a
for our updating times. time scalet,,;; [12,33.

Denoting a spir§(t), as usual, we define the magnetiza-  For a dynamic process starting from an ordered state, i.e.,

tion, its second moment, and the autocorrelationMa®)  M(0)=(1,0), no logarithmic corrections are claimed theo-

=(3;S())/L%  MOMW=([=;S(t)]?/L* and A(t) retically, since no free vortices exist. It is interesting to con-

=(3,5(0)-S(1))/L2, respectively. firm this numerically and obtain independently the dynamic
In Fig. 1, time evolution of the second moment and the€Xxponentz and the static exponemfor comparison. In this

autocorrelation for adisorderedinitial state are displayed dynamic process, the magnetizatibi(t) =[M(t),0] is sub-

with solid lines in log-log scale. In order to detect any cor-ject to the power law scaling behavi3]

rections to scaling, we have performed the simulations up to

t=10240 Monte Carlo time steps. Samples of the initial M(t)~t~ 72, 4)

configurations (also random numbersfor averaging are

20000. To estimate the errors, samples are divided into fou, order to determine the dynamic exponeimdependently,

subsamples. Assuming that there is a logarithmic correctioe introduce a time-dependent Binder cumular,

for the nonequilibrium spatial correlation length, according=\;(2);M2— 1, which behaves like

to general scaling analysis, the second moment should be-

have like[12] U(t)~t9z (5)

M@(t)~t2=N'Z(1+c/tP). 3
For bothM@)(t) andA(t), the quality of the fitting is even

slightly better than with a logarithmic correction. However,
the correction exponett is small,b=0.211 and 0.0474 for

In Figs. 2 and Fig. 3M(t) andU (t) are displayed with solid
M®)(t)=b,[t/(1+c,In(1))] 72, (1)  lines in log-log scale. Sampléaow only respect to random
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FIG. 2. Time evolution of the magnetization starting from an
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FIG. 4. Time evolution of the magnetization starting from a

ordered state in log-log scale. The dashed line is for a power law fifjis o jered state but with a small initial value in log-log scale. The
and the long dashed line is with an inverse power law correction. dashed line is for a power law fit.

numbers for averaging are 10 000. Both curves show devia-ocess starting from a disordered state but wigmell ini-

tion from power law up td~200 or 300. However, a loga-
rithmic correction does not fit to the curves. Therefore, we
should either accept a relatively bigdgfi., or consider in-

tial magnetizationl\7|(0)=(mO,O). If assuming a dynamic
scaling form, one can deduce that at the early times, the

verse power law corrections. With ansaz similar to Eq.  MagnetizatiorM (t) =[M(t),0] obeys a power la9]

(3), in a time interval [100,10240 we obtain 7/2z
=0.0588(3) andd/z=0.982(10). The fitted curves are M(t)~t’. (6)

shown with long-dashed lines in Fig. 2 and Fig. 3.

They

overlap nicely with the numerical dataolid lineg. Without ~ Here ¢ is a new independent critical exponent related to the
considering corrections to scaling, the estimated exponenisitial condition[1,9]. Since we need a small initial magne-
differ about 1% (with relatively biggertn,i). The corre- tizationm, and suffer from large fluctuation in longer times,
sponding curves are shown with dashed lines in Figs. 2 anghe simulation is only performed up te= 1000. Samples for

3

averaging is 14 000. In Fig. M (t) is displayed with a solid

Finally, to complete our investigation we study a dynamicline on log-log scale. From these data, we cannot detect a
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t

logarithmic correction. In a time intervalLl00,100Q, direct
measurement of the slope yields an expongnt0.2502),
which is the same as considering an inverse power law cor-
rection. The dashed line in Fig. 4 corresponds to a simple
power law fit. Of course, we cannot exclude that a logarith-
mic correction may be detected if we perform simulations up
to t=10000. But data analysis of the exponents below will
show that this will very probably not happen.

In Table I, we summarize all the measured exponents. For
the dynamic process starting from an ordered state, through
the measured/z we can obtain independently the dynamic
exponentz, denoted ag, in the table. Then, witlz; as input,
we calculate the static exponemt=0.240(3) from 5/2z.
This value is slightly bigger than=0.23 estimated in simu-
lations in equilibrium[35], but we believe our value is more
accurate. Withy in hand, from the index (2 »)/z in the
dynamic process starting from a disordered state, we esti-

100 1000 10000 mate another value,=2.03(1) for the dynamic exponent

Finally, combining the results of andd/z— 6 we obtain the

FIG. 3. Time evolution of the Binder cumulant starting from an third valuez;=2.041). Three estimates af from different
ordered state in log-log scale. The dashed line is for a power law fiflynamic processes agree very well. This supports the loga-
and the long dashed line is with an inverse power law correction. rithmic corrections in Eq91) and(2). A remark here is that
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TABLE I. Critical exponents measured for different dynamic processes. The dynamic expmnent

estimated fromd/z. With z; as input, from#/2z we obtain». With % in hand,z, is calculated from (2

—n)/z. From 6 andd/z— 6 we estimatez,.

d/z z

0.98210) 2.042)

72z 7
0.05883) 0.2403)

(2—7n)lz % 0
0.8663) 2.031) 0.25Q02)

d/iz—6 Z3
0.73Q1)

2.041)

even if there might be a logarithmic correction for the mag-cesses starting from both ordered and disordered states for

netization in Eq(6), it must be rather weak anglwould not  the two-dimensionalXY model. The results confirm that

be modified so much, otherwisg will deviate fromz, and  there is a logarithmic correction to scaling in case of starting

z,. Our impression is that even a small initial magnetizationfrom a disordered state, but an inverse power law correction

would suppress the effect of the vortex pairs. in case of starting from an ordered state. The dynamic expo-
Without considering a logarithmic correction, why does nent isz=2.041), slightly bigger than the theoretical value,

one observe a bigger effective dynamic exponeriut a z=2. We are satisfied with this result, since for many statis-

correct static exponenj? Qualitatively, indeed the logarith- tical systemsz is also different from the “classical” value

mic corrections in bottM (?)(t) andA(t) effectively resultin = z=2.

a biggerz But it is probably only by chance that a corregt

is quantitatively kept.

In conclusions, with Monte Carlo simulations we have

This work is supported in part by NNSF of China and

investigated the short-time behavior of the dynamic pro-DFG; TR 300/3-1.
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