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Corrections to scaling for the two-dimensional dynamicXY model
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With large-scale Monte Carlo simulations, we confirm that for the two-dimensionalXY model, there is a
logarithmic correction to scaling in the dynamic relaxation starting from a completely disordered state, while
only an inverse power law correction in the case of starting from an ordered state. The dynamic exponentz is
z52.04(1).
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In recent years, much attention has been drawn to n
equilibrium short-time behavior of critical dynamics. Trad
tionally, it is believed that universal dynamic scaling beha
ior only exists in the long-time regime of the dynam
evolution. In 1989, however, with renormalization grou
methods Janssen, Schaub, and Schmittmann derived a
namic scaling form for theO(N) vector model, which is
valid up to themacroscopicshort-time regime@1#. The dy-
namic process they considered is that the system initially
very high temperature state with small or zero magnetizat
is suddenly quenched to the critical temperature, then
leased to dynamic evolution of modelA. Important is that a
new independent critical exponent must be introduced to
scribe the scaling behavior of the initial magnetization. A
terwards, some evidence for the short-time dynamic sca
was also observed in Monte Carlo simulations@2,3#. On the
other hand, it was found that the power law decay of
magnetization starting from a completely ordered st
shows up from rather early times, e.g., see@4,5#, and it can
be used to estimate the dynamic exponentz. Inspired by
these works, in the last several years nonequilibrium sh
time critical dynamics has been systematically investiga
with Monte Carlo methods@6–10#. Simulations have ex-
tended from regular classical spin models@9,11–14#, to sta-
tistical systems with quenched disorder@15–17#, quantum
spin systems and lattice gauge theories@18–20#, dynamic
systems without detailed balance@21–23#, the hard-disk
model@24,25#, and fluid systems@26#. References given her
are only a part of recent ones and not complete. A relativ
complete list of the relevant references before 1998 can
found in Ref.@9#. All numerical and analytical results con
firm the existence of a rather general dynamic scaling fo
in critical dynamic systems at early times.

The short-time dynamic scaling has not been system
cally explored in experiments. But the dynamic scaling b
havior around a spin-glass transition@2,27–29,16# is very
similar to that around a standard critical point. For examp
the experimental measurements of the remanent magne
tion in spin glasses support not only the power law scal
behavior but also the scaling relations between the expon
@30,16#.

The short-time dynamic scaling form not only is conce
tually interesting, but also provides new techniques for
measurements of both dynamic and static critical expon
1063-651X/2001/63~3!/035101~4!/$15.00 63 0351
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as well as the critical temperature@4,8,28,31#; for a review,
see Ref.@9#. Since now the measurements are carried ou
the short-time regime, the dynamic approach does not su
from critical slowing down. Compared with those metho
developed in equilibrium, e.g., the nonlocal cluster alg
rithms, the dynamic approach does study the original lo
dynamics and can be applied to disorder systems. Furt
more, to solve numerically dynamic equations with a co
tinuous time to the long-time regime is very difficult, but th
short-time dynamic approach works well@10#. Such a
method should be also very interesting in experiments.

To understand the universal short-time behavior, o
should distinguish the macroscopic and microscopic ti
scales. The dynamic scaling emerges only after a time s
tmic which is sufficiently large in microscopic sense but s
very small in macroscopic sense. In Monte Carlo simu
tions, for example, if a sweep over all spins on a lattice
considered to be a microscopic time unit,tmic is usually from
a few to 100 Monte Carlo time steps@9#. Therefore, perform-
ing simulations up to some hundred or thousand time step
usually sufficient to obtain rather good values for critic
exponents. However, in the recent study of the tw
dimensionalXY model ~with a Kosterlitz-Thouless phas
transition! and the random-bond Ising model@12,32–34#,
one observes somewhat unexpected phenomena. The
namic exponentz estimated from a dynamic processes sta
ing from a disordered state is bigger~10 to 15 % for theXY
model and 5 to 10 % for the random-bond Ising model! than
that from an ordered state. Puzzling is that the resulting st
exponents are correct within statistical errors. This behav
should have its origin in the existence of the free vortices
the metastable states. Similar concern for theXY model with
different boundary conditions and dynamics can be fou
also in Ref.@13#. If such a kind of phenomena are not clar
fied, further applications of the short-time dynamic scali
becomes complicated and difficult.

In a recent paper@12# ~see also Ref.@33#!, Bray, Briant,
and Jervis argue theoretically that there is a logarithmic c
rection for the two-dimensionalXY model in the dynamic
process starting from a disordered state. However, the
sented numerical data cannot distinguish the two ansatz
possible biggerz, or a logarithmic correction. On the othe
hand, there has been some controversy over the value o
dynamic exponentz ~see, e.g., Ref.@13# and references
©2001 The American Physical Society01-1
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therein!, and here it is especially interesting whetherz is
exactly 2@12#. In this Rapid Communication, we report ou
large-scale Monte Carlo simulations for the two-dimensio
XY model, examine possible corrections to scaling in d
namic processes starting from both ordered and disord
states, and determine relevant critical exponents accurat

In the simulations, the system in a macroscopic init
state is suddenly quenched to the transition temperatureTKT

or slightly below, then released to dynamic evolution
modelA. In the literature,TKT is reported to be between 0.8
and 0.90. In this paper, we take the temperatureT50.89.
Following Ref. @12#, we adopt the ’heat-bath’ algorithm i
which a trial move is accepted with probability 1/@1
1exp(DE/T)#, whereDE is the energy change associat
with the move. All results are presented with a lattice s
L5256. Simulations with other lattice sizes confirm that t
finite size effect forL5256 has been completely invisibl
for our updating times.

Denoting a spinSi(t), as usual, we define the magnetiz
tion, its second moment, and the autocorrelation asMW (t)
[^( iSW i(t)&/L

2, M (2)(t)[^@( iSW i(t)#2&/L4, and A(t)
[^( iSW i(0)•SW i(t)&/L

2, respectively.
In Fig. 1, time evolution of the second moment and t

autocorrelation for adisordered initial state are displayed
with solid lines in log-log scale. In order to detect any co
rections to scaling, we have performed the simulations u
t510 240 Monte Carlo time steps. Samples of the init
configurations ~also random numbers! for averaging are
20 000. To estimate the errors, samples are divided into
subsamples. Assuming that there is a logarithmic correc
for the nonequilibrium spatial correlation length, accordi
to general scaling analysis, the second moment should
have like@12#

M (2)~ t !5b2@ t/„11c2 ln~ t !…# (22h)/z. ~1!

FIG. 1. Time evolution of the second moment and autocorre
tion starting from a disordered state in log-log scale. Dashed l
are the fitted curves with a logarithmic correction.
03510
l
-
ed
y.
l

f

e

-
to
l

ur
n

e-

Hereh is the usual static exponent,z is the dynamic expo-
nent, andb2 and c2 are constants. Similarly, the autocorr
lation

A~ t !5ba@ t/„11ca ln~ t !…#u2d/z. ~2!

Here d52 is the spatial dimension. Ifc2 and ca are zeros,
the standard power law scaling behavior is recovered. Lo
ing at Fig. 1,A(t) bends obviously downwards, consiste
with the logarithmic correction. However, the behavior
M (2)(t) is somewhat complicated and the correction is a
less strong than that forA(t). It bends slightly downwards a
early times, and changes to upwards only after about
time steps. The first behavior is not universal behavior
microscopic-detail dependent. Anyway, if the simulation
performed only up tot52000 or 3000@12,32#, it would be
difficult to conclude whether and how the power law is co
rected. Now, we fit the two solid lines in Fig. 1 to theAn-
sätzein Eqs.~1! and~2! in a time interval@100,10 240#. The
fitted curves are shown with dashed lines in the figure. T
quality of the fitting is good, and the resulting exponents
(22h)/z50.866(3) andd/z2u50.730(1).

Here it is very important to address that if directly me
suring the slope, e.g., forM (2)(t) in Fig. 1, in any time
intervals we obtain (22h)/z around 0.77 to 0.78. Thes
values differ from 0.866(3) by more than 10 %. DoM (2)(t)
andA(t) fit uniquelyto theAnsätze in Eqs.~1! and~2!? We
have tried inverse power law corrections, e.g., forM (2)(t),

M (2)~ t !;t (22h)/z~11c/tb!. ~3!

For bothM (2)(t) andA(t), the quality of the fitting is even
slightly better than with a logarithmic correction. Howeve
the correction exponentb is small,b50.211 and 0.0474 for
M (2)(t) and A(t) respectively, while the exponentd/z2u
remains the same and (22h)/z differs only by 1 or 2%. This
strongly indicates that a logarithmic correction is indeed c
rect. It is believed that the logarithmic corrections are rela
to the vortex pair annihilation, and do not disappear within
time scaletmic @12,33#.

For a dynamic process starting from an ordered state,
MW (0)5(1,0), no logarithmic corrections are claimed the
retically, since no free vortices exist. It is interesting to co
firm this numerically and obtain independently the dynam
exponentz and the static exponenth for comparison. In this
dynamic process, the magnetizationMW (t)5@M (t),0# is sub-
ject to the power law scaling behavior@9#

M ~ t !;t2h/2z. ~4!

In order to determine the dynamic exponentz independently,
we introduce a time-dependent Binder cumulant,U
[M (2)/M221, which behaves like

U~ t !;td/z. ~5!

In Figs. 2 and Fig. 3,M (t) andU(t) are displayed with solid
lines in log-log scale. Samples~now only respect to random
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numbers! for averaging are 10 000. Both curves show dev
tion from power law up tot;200 or 300. However, a loga
rithmic correction does not fit to the curves. Therefore,
should either accept a relatively biggertmic , or consider in-
verse power law corrections. With anAnsätz similar to Eq.
~3!, in a time interval @100,10 240# we obtain h/2z
50.0588(3) andd/z50.982(10). The fitted curves ar
shown with long-dashed lines in Fig. 2 and Fig. 3. Th
overlap nicely with the numerical data~solid lines!. Without
considering corrections to scaling, the estimated expon
differ about 1% ~with relatively bigger tmic). The corre-
sponding curves are shown with dashed lines in Figs. 2
3.

Finally, to complete our investigation we study a dynam

FIG. 2. Time evolution of the magnetization starting from
ordered state in log-log scale. The dashed line is for a power law
and the long dashed line is with an inverse power law correctio

FIG. 3. Time evolution of the Binder cumulant starting from
ordered state in log-log scale. The dashed line is for a power law
and the long dashed line is with an inverse power law correctio
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process starting from a disordered state but with asmall ini-
tial magnetizationMW (0)5(m0,0). If assuming a dynamic
scaling form, one can deduce that at the early times,
magnetizationMW (t)5@M (t),0# obeys a power law@9#

M ~ t !;tu. ~6!

Hereu is a new independent critical exponent related to
initial condition @1,9#. Since we need a small initial magne
tizationm0 and suffer from large fluctuation in longer time
the simulation is only performed up tot51000. Samples for
averaging is 14 000. In Fig. 4,M (t) is displayed with a solid
line on log-log scale. From these data, we cannot dete
logarithmic correction. In a time interval@100,1000#, direct
measurement of the slope yields an exponentu50.250(2),
which is the same as considering an inverse power law
rection. The dashed line in Fig. 4 corresponds to a sim
power law fit. Of course, we cannot exclude that a logari
mic correction may be detected if we perform simulations
to t510 000. But data analysis of the exponents below w
show that this will very probably not happen.

In Table I, we summarize all the measured exponents.
the dynamic process starting from an ordered state, thro
the measuredd/z we can obtain independently the dynam
exponentz, denoted asz1 in the table. Then, withz1 as input,
we calculate the static exponenth50.240(3) fromh/2z.
This value is slightly bigger thanh50.23 estimated in simu-
lations in equilibrium@35#, but we believe our value is mor
accurate. Withh in hand, from the index (22h)/z in the
dynamic process starting from a disordered state, we e
mate another valuez252.03(1) for the dynamic exponentz.
Finally, combining the results ofu andd/z2u we obtain the
third valuez352.04(1). Three estimates ofz from different
dynamic processes agree very well. This supports the lo
rithmic corrections in Eqs.~1! and~2!. A remark here is that

fit
.

fit
.

FIG. 4. Time evolution of the magnetization starting from
disordered state but with a small initial value in log-log scale. T
dashed line is for a power law fit.
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TABLE I. Critical exponents measured for different dynamic processes. The dynamic exponentz1 is
estimated fromd/z. With z1 as input, fromh/2z we obtainh. With h in hand,z2 is calculated from (2
2h)/z. Fromu andd/z2u we estimatez3.

d/z z1 h/2z h (22h)/z z2 u d/z2u z3

0.982~10! 2.04~2! 0.0588~3! 0.240~3! 0.866~3! 2.03~1! 0.250~2! 0.730~1! 2.04~1!
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even if there might be a logarithmic correction for the ma
netization in Eq.~6!, it must be rather weak andu would not
be modified so much, otherwisez3 will deviate fromz1 and
z2. Our impression is that even a small initial magnetizat
would suppress the effect of the vortex pairs.

Without considering a logarithmic correction, why do
one observe a bigger effective dynamic exponentz but a
correct static exponenth? Qualitatively, indeed the logarith
mic corrections in bothM (2)(t) andA(t) effectively result in
a biggerz. But it is probably only by chance that a correcth
is quantitatively kept.

In conclusions, with Monte Carlo simulations we ha
investigated the short-time behavior of the dynamic p
. B
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cesses starting from both ordered and disordered state
the two-dimensionalXY model. The results confirm tha
there is a logarithmic correction to scaling in case of start
from a disordered state, but an inverse power law correc
in case of starting from an ordered state. The dynamic ex
nent isz52.04(1), slightly bigger than the theoretical value
z52. We are satisfied with this result, since for many sta
tical systemsz is also different from the ‘‘classical’’ value
z52.

This work is supported in part by NNSF of China an
DFG; TR 300/3-1.
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